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A B S T R A C T

This paper addresses heterogeneity in the deterministic portion of a cost frontier and in the parameterisation of
technical inefficiency using an unbalanced panel of bus transit systems. It conceptualises six groups of variables
which affect heterogeneity in cost and technical inefficiency: organisational size, ownership, service delivery
methods, regulations, external factors and trend. Then, it specifies and estimates a translog cost frontier and from
its results identifies those variables that affect technical inefficiency. It finds that purchasing some passenger
services and providing others directly and bus useful-life regulation increase technical inefficiency. It also finds
that MPO-owned single mode bus systems have less technical inefficiency and while network size increases
technical inefficiency it reduces cost. From this result it cautions making inferences about how a variable impacts
cost from its effect on technical inefficiency. It examines the managerial implications of the results and suggests
using variables in the parameterisation of technical inefficiency whose effects on costs have been established
empirically or through conceptualisation.

1. Introduction

Many researches on technical inefficiency using panel data such as
Battese and Coelli (1995), Matas and Raymond (1998), Cornwell,
Schmidt and Sickles (1990), Lee and Schmidt (1993) and Cuesta (2000)
variously address heterogeneity in the context of maximum likelihood
estimation. In addition Caudill, Ford and Gropper (1995) showed that
when maximum likelihood estimation methods are used heterogeneity
leads to overestimation of the constant term, underestimation of the
slope coefficients as well as biases in the estimation of production
frontier models. To address this problem, they suggested a stochastic
frontier model which parameterised the variance of inefficiency in
terms of internal organisational variables, arguing as in Schmidt (1986)
that they are responsible for differences in firms. Concurring with this
view, Greene (2005) notes that in maximum likelihood estimation
heterogeneity confounds technical inefficiency estimates if not ac-
counted for properly. Since then, subsequent stochastic frontier models
have been developed which allow heteroscedasticity in the variance of
technical inefficiency to be studied by including firm-level variables in
the variance of the one-sided error term and factors outside the control
of management in the variance of the two-sided random error. For
example Amsler, Schmidt and Tsay (2014) developed a post-truncation
approach that allowed environmental variables to affect the mean of

technical inefficiency, its variance or both.
Instead of parametrising the variance of technical inefficiency some

recent extensions of these models decompose technical inefficiency
while still accounting for heterogeneity. The Ahn et al., (2007) model
for example has multiple components of inefficiency and Abrate et al.
(2008) used time-invariant variables in their deterministic equation and
time-varying factors in the stochastic component of their function,
while Kumbhakar et al. (2012) decomposed technical inefficiency into
persistent and residual components and found persistent (time-in-
variant) inefficiency to be larger than residual inefficiency. Also,
Colombi et al. (2014) decomposed technical inefficiency into individual
effect (latent heterogeneity), long term persistent inefficiency (time
invariant due to input rigidities which inhibit input substitution), short
run inefficiency (time varying) and random inefficiency. They conclude
that their decomposition is appropriate when firms are heterogeneous,
implying a large cross-section of firms to give cross-firm data variation,
and a long panel to give within-firm data variation.1

This within-firm data variation has been noted by Greene (2003,
2005) as essential when fitting stochastic frontier models using panel
data and that short panels could give inconsistent results. Further, as he
notes, short panels may be unsuitable to many of the stochastic frontier
models and cannot be fitted to the true fixed effect model because of the
incidental parameters problem. In such instances, he suggests using
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advanced numerical algorithms to solve this problem while Chen,
Schmidt and Wang (2014) propose a simulated likelihood method to
solve it. In addition, Wang and Ho (2010) propose a methodology based
on first differencing to remove individual fixed effects, and within-
transformation by subtracting the sample mean from each observation
to remove time invariant individual effects before estimation. Further,
they propose an approach to recover the individual effects from first
order conditions after the estimation. While this method resolves the
problem, it requires within-firm data variation absent which the value
of each variable becomes a zero after the differencing.

Recognising the importance of heterogeneity and the advances
made to decompose it, the extant literature in public transit economics
has focussed mostly on addressing it by parameterising technical in-
efficiency with very few applications of the types of decomposition
proposed by KL and CKMV. This literature can be grouped into two. The
first which assumes that heterogeneity resides in technical inefficiency
is a two-step approach with two streams of research: the post hoc,
which calculates technical efficiency by parametric or non-parametric
methods and relates it to organizational and environmental variables
using a second-stage regression (e.g., Kerstens 1999); and the latent
class approach which considers heterogeneity in its classification of
transit systems and then in its decomposition of the resulting technical
inefficiency by Tobit regression (Obeng 2013). The second and the most
prevalent is the one-step approach which again assumes that hetero-
geneity resides in technical inefficiency and parameterises and esti-
mates it using stochastic frontier models.2 Using this latter approach
and panel data, Farsi et al. (2006) conclude that ignoring heterogeneity
could lead to an upward bias in the calculation of inefficiency scores
because unobserved heterogeneity, output and network size may be
correlated. A similar parameterisation by Vigren (2016) found low
technical efficiency in Swedish transit systems operating in high density
cities, where competitive tendering was used, and differences in cost
efficiency between the transit systems that received incentives and
those that did not. Additionally, Zhang, Juan and Xiao (2015) found
that gross cost contracts provided incentives for Chinese transit systems
to be technically efficient compared to net cost and management con-
tracts, while Jarboui et al. (2013, 2014a, 2014b) found inverse re-
lationships between board size and managerial optimism and technical
efficiency, and a positive relationship between CEO tenure and tech-
nical efficiency. Similarly, Piacenza (2006) using this approach rejected
the absence of cost inefficiency and found that transit systems receiving
fixed-price subsidies had lower distortions from minimum cost, and that
speed accounted for firm differences in cost inefficiency.

While the knowledge gained from these parameterisations of public
transit technical inefficiency has been insightful, many studies do not
include a cross-section of variables reasonably expected to contribute to
managerial inefficiency especially those that affect cost and technical
inefficiency simultaneously.3 For example, the received public transit
literature above on one-step estimation has focussed individually on the
effects of regulations, organisational and environmental contextual
variables on technical inefficiency (not cost) and not in aggregate. Thus,
it is unknown what the results would be if variables representing dif-
ferent aspects of transit operations are considered together especially if
they are correlated with cost and technical inefficiency. This approach
in the public transit economics literature also limits understanding the
true effects of some of these variables on cost by leaving researchers to

infer the cost effect of a variable that affects technical inefficiency from
the duality between cost and production functions, which may not al-
ways be correct if for example regulations prevent full adjustment to
cost minimisation input levels. For example consider an incentive reg-
ulation that rewards transit systems when their services are effective in
terms of passenger miles and reduces operating cost as found in US
transit systems. Such a regulation distorts input use in favour of capital
whose costs are high and increases total cost as Obeng and Azam (1995)
found, as well as increases technical efficiency by rewarding transit
systems that produce large outputs. If in the same stochastic frontier
model this regulation is included only in the parameterisation of
technical inefficiency alone and not in the deterministic cost part,
probably its true effects cannot be determined leading to misdirected
policies. There are other variables yet to be identified whose cost effects
cannot be inferred from their effects on technical inefficiency. Research
is therefore needed to begin identifying some of these variables and this
is where this paper makes its contribution to the public transit eco-
nomics literature. To do so it studies cost and technical inefficiency by
including some variables describing the regulatory and operating en-
vironments of transit systems in the stochastic and deterministic parts
of the cost function and estimating the resulting stochastic frontier
model. The results allow us to compare the coefficients to identify
network size as that whose cost effect cannot be inferred from its effect
on technical inefficiency, and to surmise that input regulations do not
allow the true effect of partial contracting on technical inefficiency to
be realised. The rest of the paper is organised as follows. The next
section is the methodology and it is followed by the data, results and
conclusion respectively.

2. Methodology

The treatment of heterogeneity by parameterising the technical in-
efficiency term in a stochastic frontier model in this paper begins by
considering a transit systemn that uses the set of inputs ⋯x xn t nit1 ,to
produce the output Qnitwhere =n N1, 2, 3, ... indexes transit systems,

= ⋯i j1, 2, 3 indexes the inputs, and the trend and technology
variable = ⋯t T1, 2, 3, . shifts the production frontier. We begin by
assuming that this transit system has no allocative distortion from
regulations, funding and administrative restrictions and market im-
perfections, thus allowing full adjustments of inputs to cost minimising
levels in response to input price changes. This adjustment makes the
transit system minimize its total cost = ∑C w xnt

i
nit nit1 subject to a pro-

duction technology where, wnitis each input’s observed actual price.
With this assumption the transit system’s cost minimization problem is,

∑= + − ⋯ −L w x γ Q Q x x z z t emin ( [ . .. ] )
x

i
nit nit nt nt n t nit n t njt

v u
1 1 1 , nt nt

(1)

whereγ is the Lagrangian multiplier and ∙Q [ ] is the production
function. Also, assume that this transit system has technical inefficiency
in producing its output and let −Q e[·]nt

v unt ntbe the production frontier
capturing this inefficiency, and ⋯z zn t njt1 , each period’s set of hetero-
geneity variables for this transit system. This technology assumes a
composed error = −ε v unt nt nt where vis a normally distributed random
error, v N σ(0, )nt v

2 and the technical inefficiency term unt follows a
truncated normal distribution N μ σ( , )u

2 with a mean of μ and a
varianceσu

2. Thus − unt is technical inefficiency or the proportion by
which this transit system’s actual output falls short of the maximum
output it can produce with its inputs.

Using Eq. (1) the minimum cost frontier for this transit system is
derived as = ⋯ +C C w w w z z Q t e( , .. , , , )nt min n t n t nit n t njt nt

v u
1 , 2 1 , nt nt where untis

now the proportion by which its actual cost exceeds minimum cost due
to technical inefficiency andvnt is the proportion of its excess cost due to
random error. Imposing linear homogeneity restrictions on ∙C ( )nt by
using wn t1 as the price of the reference input, we approximate the transit
system’s empirical linearly homogeneous minimum cost frontier by the
translog technology below:

2 This is an alternative to treating the inefficiency determinants as hetero-
scedastic variables in technical inefficiency by parameterizing the variance of
technical inefficiency in terms of these determinants as noted earlier.

3 Though not considered in this paper Battese and Coelli (1995) note that the
variables in the parameterization can include input variables provided their
inefficiency effects are stochastic, and interaction terms between input vari-
ables and firm specific variables. This is also true in the Huang and Liu (1994)
model where the variables appearing in the parameterization included inputs,
government and institutional regulations and their interactions.
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For heterogeneity in cost we include RW for the transit system’s
network size in terms of miles of right-of-way and DEN for population
density. Dtis a binary time variable for each = ⋯⋯t T1, 2, . measuring
neutral technical change whose rate is the difference between the va-
lues of φtin successive periods as in Cuesta (2000).4 Since this paper’s
objective is to add to understanding the factors affecting cost and
technical inefficiency in public transit systems to inform policy better,
we follow Holmgren (2013) and use the panel formulation of the cost
frontier in Battese and Coelli (1995) for time varying technical in-
efficiency. So, we parameterise technical inefficiency in terms of pro-
ducer time-specific (or environmental time-specific) variables y( )that
potentially affect it instead of just time only.5

The choice of variables to include in this parameterisation is in-
formed by our earlier discussion and the results of recent work by
Obeng et al. (2016) which examined the effects of government reg-
ulations on technical inefficiency in US public transit systems. That
study found technical inefficiency to be higher in transit systems that
met the spare-bus ratio regulation and in transit systems that oper-
ated<150 vehicles. Margari, Erbetta, Petraglia and Piacenza (2007)
found that high-powered incentive contracts (incentive regulation)
improved efficiency in their study of Italian bus transit systems and
Nolan (1996) found in his US study that federal and state subsidies and
fleet age increased technical efficiency. Using these findings and those
from the aforementioned studies as a guide, this paper conceptualizes
six types of heterogeneity variables that potentially affect public transit
technical inefficiency. They are organisational contextual variables in-
cluding types of ownership (e.g., MPO-owned), methods of service de-
livery (e.g., partial contracting whereby direct provision and con-
tracting-out of some passenger services are combined), government
regulations, external environmental factors (population density and
service area), organisational size (e.g., network size in terms of route
miles) and trend.6,7

With this parameterisation the logarithm of technical inefficiency in
Eq. (2) is,

∑= + +u y Wϑ ϑnt n nt nt nt0 (3)

=

fory

f organizationalsize ownership servicedelivery regulation externalfa

ctors trend

( , , , ,

, )

where, Wntfollows a truncated normal distribution and the point of
truncation is − + ∑ y(ϑ ϑ );n nt nt0 that is, ≥ − + ∑W y(ϑ ϑ )nt n nt nt0 . If

=ϑ 0nt for each variable then technical inefficiency is the same for all
transit systems and equal to the constant termϑ0. If ≠ϑ 0nt then tech-
nical inefficiency depends on the values of ynteach period and also
varies across observations. The first term accounts for the contributions
of missing variables (unobserved heterogeneity) to technical in-
efficiency and the second shows the contributions of observed hetero-
geneity to time-varying technical inefficiency.8 Since we use the Battese
and Coelli (1995) stochastic frontier model for panel data the effects of
unobserved heterogeneity resides in the constant term but cannot be
extracted. By this model the technical inefficiency effects are the pro-
duct of an exponential function of time and the non-negative firm
specific term given by,

∑= − − + +u η t T y W{exp[ ( )]} ϑ ϑnt n nt nt nt0 (4)

where, ηis the time varying parameter. Substituting this equation
into Eq. (2) the resulting equation can be estimated by maximum
likelihood methods.

However, before the estimation and following Greene (2007) the
log-likelihood function of the truncated normal model is specified as,
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Where the Φterm is the cumulative density function of the standard
normal distribution. This likelihood function is maximized with respect
to β σ λ, , and α and the parameter μ obtained from =μ ασλ.Then, we
use the Jondrow et al. (1982) estimator below to calculate stochastic
technical inefficiency (u) as

⌊ =
+

⎡
⎣⎢ −

⎤
⎦⎥

= + =E u ε σλ
λ

ϕ z
z

ε v u z ελ σ[ ]
1

( )
1 Φ( )

, , /
(6)

where, ∙ϕ ( )is the probability density function. The value of each
transit system’s technical efficiency (TE) is then calculated
as = −TE uexp( ).

3. Data

Context: This study uses data for US public transit systems that op-
erate bus-only modes in applying these equations. Thus, the data do not
include those that operate light rail, subways, trolleys, inclined plane
and ferries. A rationale for this choice is to avoid mixing modes with
different operating characteristics and technologies. Another is that the
data source, the National Transit Database (NTD), already uses this
classification and contains detailed information on single-mode bus
transit systems. These bus-only systems generally operate in cities with
a million population or less, and unlike those in larger cities receive
federal operating subsidy. Initially, we considered and included all such
systems in this database for the period 2007–2011 and to increase

4 In the Battese and Coelli (1995) model a trend variable appeared in the
deterministic and stochastic parts of the model and they noted that the dis-
tributional assumptions of inefficiency allow technical change, the time-varying
inefficiency and the constant terms in the deterministic and stochastic equa-
tions to be identified.

5 The rationale for this model choice is that the data did not fit fixed and
random effects models perhaps because it is a short panel with less within-firm
data variation.

6 In an initial formulation we included some of these variables particularly
those representing regulations in the deterministic portion of the frontier and
did not get good results.

7 Interactions terms were also considered and discarded for lack of fit.

8 In the absence of this parameterization = +U vϑnt nt0 after adding the error
term to it and if there are individual effects αnthey can be added to ϑ0to obtain

= +U ω vnt n nt where = +ω αϑn n0 and the equation estimated as a fixed or
random effect model.
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within-firm data variation selected those that had at least 4 years data
in the period studied. This resulted in data for 77 transit systems and
359 observations.

Output and inputs: Previous research guided the selection of output
and inputs for this study. In three recent papers JFB used operating cost
and the number of employees as measures of transit inputs in their
production function, arguing that their approach was robust and
avoided problems of input substitution. They also reported studies that
used a single measure of input (e.g., Jha and Singh 2000). Apart from
these studies, many others have used two inputs which are labour and
fleet size (Singh and Vanketesh, 2003) or three inputs which are labour,
fleet size and energy in their production and cost functions as in OSN
and Agarwal, Yadav and Singh (2009) and Nagadevara and Ramanayya
(2010). Following these latter studies, we use labour (x )n t1 , non-labour
inputs (x )n t2 broadly defined to represent all other inputs which are
neither labour nor capital and whose costs are included in public transit
operating expenses (e.g., fuel, tires, supplies, and utilities), and capital
(x )n t3 mwasured by fleet size. We measure these inputs as follows: la-
bour worked-hours measure the quantity of labour employed, fleet size
is the quantity of capital, and the total gallons of all types of fuel are a
proxy for all other inputs. Because this study’s focus is on technical
efficiency, we use the produced output, vehicle miles, as output as
opposed to passenger miles which are demand-related and reflect ser-
vice effectiveness.

Input prices: All prices and cost are in base year 1984 prices. Labour’s
price w( )n t1 is real total labour compensation and benefits per labour
worked hour; the price of the proxy input w( )n t2 is real total non-labour
operating cost per gallon of fuel. For the rental price of capital w( )n t3 we
use the formula in OSN to calculate it. This formula is

= + −w r R d e( )n t t t
d AGE

3
( )nt where, rt is the weighted average real price of

a new public transit bus in each year tas reported by APTA (2007, 2008,
2009, 2010 and 2011). Rtis each year’s rate on a high yield municipal-
bond for the city or county where the transit system is located; dis a
straight line rate of depreciation assuming a bus useful life of 20 years;
and AGEnt is each transit system’s average fleet age. From these prices
the real yearly total cost of each transit system
is = + +C w x w x w x .nt n t t n t t n t t1 1 2 2 3 3

Regulation variables: Regulations in US transit systems are different
from what prevails elsewhere because there is not a central body
overseeing and monitoring the types of services transit systems provide
in terms of quantity, quality and fares. Rather they are in the form of
administrative and funding requirements, executive instruments and
laws passed by congress. In this study we consider five federal regula-
tions eventually using three in the models because not all transit sys-
tems met them, thus making it possible to code each of them using a
binary system. For the labour protection regulation (CAP) which transit
systems must certify they meet before receiving federal capital subsidy,
a transit system was coded one (yes = 1) and having met the regulation
if it received capital subsidy and a zero (no = 0) otherwise. Similarly, a
transit system receiving Federal Urbanized Are Formula Grant (IN) was
coded one (yes = 1) and having met the incentive regulation and zero
(no = 0) otherwise. The federal government regulates that transit
systems cannot keep more than 20% of the buses they buy with federal
subsidy as spare (SP). To determine if a transit system met this reg-
ulation, we subtracted the yearly percentage of its fleet of buses it op-
erated in maximum service from 100, and considered a transit system as
having met it if the resulting percentage was 20% or less. And for the
requirement that buses bought with federal subsidy must be used for at
most twelve years (FA), a transit system was coded as having met it if its
average fleet age was less than or equal to 6 years (yes = 1) and not
having met it otherwise. Lastly, the federal requirement that transit
systems receiving operating subsidy must purchase some passenger
services from the private sector (DOPT) was treated as a service de-
livery method and its coding discussed under that heading.

Service delivery method, ownership and others: To account for own-
ership differences, we distinguish city-owned (CITY) and MPO-owned

transit systems (MPO) since they are the most dominant in our data and
use a binary system to code each of them (yes = 1, no = 0). Regardless
their types of ownership and coding, by regulation U.S. transit systems
that receive federal operating subsidy are required to contract-out
portions of their passenger services to private sector companies to
provide (DOPT) and those that do so are coded one (yes = 1) and zero
(no = 0) otherwise. Similarly, we used a binary coding (yes = 1,
no = 0) to identify those that provide their services directly (DP), re-
cognizing that those are their core areas. That is, the areas of their
expertise and in focusing on them they are able to provide the quantity
and quality of service they desire at a cost they can afford, which might
lead to lower technical inefficiency and lower cost. While other mea-
sures such as purchasing the entire passenger service from private
sector sources (PT) could have been used, an initial estimation of the
model that included them did not yield good results. Besides these
variables, the data include population per square mile (DEN) reflecting
congestion, service area in terms of square miles (SQ) describing the
external operating environments of the transit systems, and network
size in terms of miles of right of way (RW) all of which are observed
heterogeneity variables.

Descriptive statistics: Table 1 shows descriptive statistics about the
data that this study used. From the table all the transit systems we
studied met the federal labour protection requirement, 93.6% received
incentive subsidy and 39.3% met the bus useful-life regulation. Also,
41% had dedicated local subsidy sources, 28.4% met the spare bus ratio
regulation, 39.6% operated their services entirely by themselves, 6.1%
used the mixed approach whereby they provided some of their pas-
senger services themselves and contracted out the rest to private sector
companies and 54.3% contracted out their entire service to private
sector companies. Thus, overall, 60.7% of the transit systems studied
involved private sector companies in their operations through partial-
or full-service contracting. Also, the table shows that 60.7% of these
transit systems were city-owned, 34.3% were MPO-owned, and other
agencies such as universities, state and human services organizations
owned the rest (5.0%).

4. Estimation and results

The empirical equation to be estimated with this data is Eq. (2) with
Eq. (4) substituted into it and incorporating the assumed truncated
normal distribution of inefficiency. Before the estimation some mod-
ifications were made to the model. First, because all the transit systems
on one hand and 93.6% on the other met the federal labour protection
and the incentive regulations respectively they were deleted from the
final model for lack of variation. Second, initial estimation showed that
none of the coefficients of the binary time variables was statistically
significant in the deterministic model so one year (t2008) was randomly
selected and included in the final model. After these modifications the
resulting model showing time-varying technical inefficiency was esti-
mated by the Battese and Coelli (9 9 5) stochastic frontier method for
panel data in LIMDEP (Greene 2007). The results of the estimation are
in Table 2. The fit statistics at the top of this table clearly show that the
source of the variance in the errors in the stochastic frontier is the
truncated inefficiency term (72.4%) and not the normally distributed
random error term. Next, considering the deterministic component of
the stochastic cost frontier, many of the first order coefficients which
show long run elasticities are statistically significant and give 14.2%
and 20.1% as the respective cost shares of non-labour and capital in-
puts. Adding these cost shares and subtracting the result from one, gives
labour cost share of 65.7%. Besides these cost shares, the elasticity of
cost with respect to output being 0.78 and statistically different from
one (t = (0.79–1.00)/0.0221) = -9.50) indicates economies of scale.
Other first order coefficients that are statistically significant are those of
network size, population density and service area which are −0.0397,
0.4319 and 0.0982 respectively. Of the second order terms, many have
statistically significant coefficients except the capital-labour relative
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price term (-0.0202), the second order terms of output (0.0062) and
network size (-0.0219), and the output-network interacting term
(-0.0183). Additionally, the coefficient of time is statistically insignif-
icant suggesting no technical change in the transit systems studied
during the period considered.

Turning our attention now to technical inefficiency, the variance
parameters λand σuof the compound error and the parameter of the
time-varying inefficiency ηare all statistically significant. The latter
result being negative shows a statistically significant decline in tech-
nical efficiency over time in the transit systems studied. Further, the
results show a mean technical inefficiency of 0.74 with a standard de-
viation of 0.12. Since we assume no allocative distortion, this technical
efficiency is also cost efficiency. While this is noteworthy, the sources of
technical inefficiency are useful in identifying the factors which in-
crease or decrease it. The information near the bottom of the table
shows these sources. A statistically significant negative coefficient of a
variable shows it is a source of a decrease in technical inefficiency, and
a statistically significant positive coefficient shows it is a source of an
increase in technical inefficiency.

Network size: From the table, a source of increase in technical in-
efficiency is network size in terms of miles of right-of-way whose
coefficient is 0.1338 and statistically significant at< 0.0005 prob-
ability level. This implies that an increase in a transit system’s network
size increases technical inefficiency, or that technical inefficiency is
larger in large transit systems compared to small ones. A possible
reason for this finding is increases in organisational complexity as
system size increases which lead to lower productivity and higher cost.
Contrary to this finding, we noted above that the first order coefficient
of network size is −0.0397 and statistically weak (p = 0.068) in the
deterministic part of the cost equation. Combining that finding with
that regarding network size in the inefficiency equation, it cannot be
said that the higher technical inefficiency in transit systems with ex-
tensive networks that we found translates into higher cost. For there
may be some cost advantages of transit systems with larger networks
which we have not captured in this study. Furthermore, we find a
statistically significant coefficient of population density (0.4319,
p < 0.0001) in the cost equation, indicating that an increase in po-
pulation density increases cost less proportionately and providing an
advantage to transit systems operating in areas with high densities.

Regulations and Service Delivery Method: For the regulation variables,

the coefficient of the bus useful life regulation is positive (0.11) and
statistically significant at the 0.088 probability level. Though statisti-
cally weak, this finding suggests a higher level of technical inefficiency
in transit systems that meet the bus useful-life regulation. It is found
from the results also that meeting the spare-bus ratio regulation reduces
technical inefficiency but this effect is not statistically significant. As
regards the contracting regulation, one of its objectives is to control cost
and allow transit systems to shed the portions of their services such as
specialized transportation which they deem themselves incapable of
providing efficiently to private sector companies. If successful, then
contracting-out some passenger services to private transit systems
should reduce technical inefficiency and reduce cost. In Table 2, with a
coefficient of 0.29 whose level of statistical significance is 0.0000,
technical inefficiency is higher in transit systems that meet the con-
tracting regulation by providing some passenger services themselves
and contracting-out others to private sector companies. Though the
reverse may be expected, it is the presence of technical inefficiency in
these transit systems that drives the regulation for them to contract-out
portions of their services to private sector companies in the first place.
Notwithstanding, another explanation for this finding is that because
such transit systems receive federal capital subsidy, they cannot reduce
their levels of employment without violating the labour protection
clause and so are left with many employees to produce less output when
services are contracted out to private sector companies. Similarly, if a
contractor must provide own vehicles, the contracting agency is left
with many buses and employees to produce a less amount of output
which also leads to technical inefficiency. Thus, our finding reflects the
fact that contracting out some services while complying with restrictive
input level regulations increases technical inefficiency.

Type of ownership: In addition to the above results, the table shows
that the coefficient of MPO-owned transit systems in the technical in-
efficiency equation is negative (-0.31) and statistically significant
(p = 0.0499). This suggests that technical inefficiency is lower in MPO-
owned transit systems than in other forms of ownership, or that they are
more efficient compared to other types of transit ownership. Because
MPO-owned transit systems account for 34.5% of the transit systems
studied, these findings suggest that technical inefficiency is higher in
the remaining 65.5%. These latter transit systems are operated by cities,
agencies, universities and other private companies, some with more and
others with less resources that may be less concerned about efficiently

Table 1
Descriptive Statistics.

Cost, Prices and Output Mean Std. Dev. Minimum Maximum Cases

C Totalcostln( : )nt 15.9093 1.0419 13.7361 18.7746 359
−w Priceofnon laborinputln( : )n t2 0.6035 0.4102 −1.0505 2.8014 359

w Rentalpriceofcapitalinputln( : )n t2 7.1393 0.3480 6.2971 8.1754 359
w Priceoflabourln( : )n t3 2.5319 0.2961 1.5598 3.2281 359
Q Outputinvehiclemilesln( : )nt 14.9219 0.9972 12.8639 17.6690 359

Regulations
SP: Meets spare-bus ratio regulation (yes = 1, no = 0) 0.2841 0.4516 0.0 1.0 359
IN: Meets incentive regulation by receiving incentive-tier subsidy (yes = 1, no = 0) 0.9359 0.2452 0.0 1.0 359
CAP: Meets federal labour protection regulation (yes = 1, no = 0) 1.0000 0.0000 1.0 1.0 539
FA: Meets bus useful-life regulation (yes = 1, no = 0) 0.3928 0.4890 0.0 1.0 359
DOPT: Meets regulation to purchase some passenger service from private companies (yes = 1, no = 0) 0.0613 0.2402 0.0 1.0 359
Service Delivery Method
DP: Directly provides service (yes = 1, no = 0) 0.3955 0.4896 0.0 1.0 359
PT: Purchases entire service from private sector (yes = 1, no = 0) 0.5432 0.4988 0.0 1.0 359
Ownership Type
MPO: MPO-owned (yes = 1, no = 0) 0.3426 0.4752 0.0 1.0 359
CITY: City-owned (yes = 1, no = 0) 0.6072 0.4890 0.0 1.0 359
Organisational Size

− −RW Milesofright of wayln( : )nt 5.7666 0.7913 4.0943 8.2699 348
Others
Local dedicated subsidy (yes = 1, no = 0) 0.4095 0.4924 0 1 359

SQ Serviceareinsquaremilesln( : )nt 4.9624 0.9780 3.0445 7.4593 359
DEN Populationdensityln( : )nt 7.6729 0.3205 7.0148 8.8633 359

K. Obeng Case Studies on Transport Policy xxx (xxxx) xxx–xxx

5



managing their limited resources, than being effective in providing
services to their populations.

5. Conclusion

This paper’s objective was to understand the factors affecting public
transit cost and technical inefficiency by parameterising the latter in a
stochastic cost frontier model in terms of variables expected to affect it
and including some of these variables in the deterministic cost. A
translog cost frontier which assumed the one-sided inefficiency term
followed a truncated normal distribution was then specified and esti-
mated using an unbalanced panel consisting of 77 US transit systems
and 359 observations distributed variously across five years. The results
showed 0.74 technical efficiency on the average and an increase in
network size in terms of route miles increasing technical inefficiency.
This means that transit systems with extensive networks have higher
levels of technical inefficiency when compared to smaller transit sys-
tems, a finding inconsistent with that of JRB.

Also, the results showed that meeting the spare-bus ratio regulation
had no effect on technical inefficiency but meeting the bus-useful life
regulation increased technical inefficiency. Further, we found that
transit systems that contracted out some of their passenger services to
private sector companies while providing others themselves had higher
levels of technical inefficiency. While this finding is inconsistent with
what we expected and counterintuitive, it is the presence of technical
inefficiency and some services falling outside the core competencies of
some transit systems that drive contracting-out efforts. Thus, the ser-
vices which transit systems provide themselves are those they have
competencies providing, and those they contract out are the ones out-
side their core competencies which they perceive contractors as having
the capability and expertise to provide at a lower cost and at a level of
service the bus transit systems desire. That our finding contradicts this
expectation suggests that there must be systemic inefficiencies that
cannot be addressed with partial contracting.

The paper also examined the effects of different types of public
transit ownership on technical inefficiency, finding that being MPO-

Table 2
Stochastic Cost Frontier Model.

Log likelihood function 374.62
Estimation based on N = 359, K = 27
Inf. Cr. AIC = -691.7, AIC/N = -1.94
Stochastic frontier based on panel data (77 transit systems)

σv
2 0.0034

σv 0.0580

σu
2 0.0243

σu 0.1558

= +σ σ σv u
2 2 0.1663

= σ σΓ /u v
2 2 0.8784

+σ σ σ/( )u u v
2 2 2 0.7241

Battese-Coelli Models: Time Varyinguit
Time dependent uit = exp[-η(t-T)]*|U(i)|

Coefficient Standard Error z Prob. |z| > Z*
Deterministic Component of Stochastic Frontier Model
Constant −0.3043* 0.0514 −5.92 0.0000

−w wln( ) ln( )n t n t3 1 0.2009* 0.0200 10.04 0.0000
−w wln( ) ln( )n t n t2 1 0.1423* 0.0290 4.91 0.0000

lnQnt 0.7854* 0.0221 33.48 0.0000

× −w w0.5 [ln( ) ln( )]n t n t2 1 2 −0.0801* 0.0256 −3.28 0.0010

− × −w w w w[ln( ) ln( )] [ln( ) ln( )]n t n t n t n t2 1 3 1 0.0830** 0.0388 2.14 0.0326
− ×w w lnQ[ln( ) ln( )]n t n t nt2 1 −0.1417* 0.0491 −2.89 0.0039

× −w w0.5 [ln( ) ln( )]n t n t3 1 2 −0.0202 0.0215 −0.94 0.3471

− ×w w lnQ[ln( ) ln( )]n t n t nt3 1 0.1033* 0.0302 3.32 0.0009

× Q0.5 [ln( )]nt 2 0.0062 0.0242 0.25 0.7997

RWln( )nt −0.0397*** 0.0217 −1.83 0.0680
− ×w w RW[ln( ) ln( )] ln( )n t n t nt2 1 0.1296** 0.0580 2.50 0.0124
− ×w w RW[ln( ) ln( )] ln( )n t n t nt3 1 −0.1411* 0.0389 −3.63 0.0003

×Q RWln( ) ln( )nt nt −0.0183 0.0407 −0.45 0.6539

× RW0.5 [ln( )]nt 2 −0.0058 0.0447 −0.13 0.8975

SQln( )nt 0.0982* 0.0180 5.45 0.0000
PDENln( )nt 0.4319* 0.0397 10.88 0.0000

t2008 −0.0092 0.0166 −0.55 0.5808
Offset [mean = μi] parameters in one sided error
Constant 0.2946* 0.0670 4.39 0.0000
Meets bus useful life regulation (yes = 1, no = 0) 0.1055*** 0.0619 1.71 0.0880
Purchases some services (yes = 1, no = 0) 0.2655* 0.0935 2.84 0.0045
MPO owned (yes = 1, no = 0) −0.3090** 0.1576 −1.96 0.0499
Meets spare bus ratio regulation (yes = 1, no = 0) −0.0255 0.0679 −0.38 0.7075

RWln( )nt 0.1338* 0.0382 3.50 0.0005
Variance parameters for compound error
λ 2.6878* 0.0568 47.34 0.0000
ou 0.1558* 0.0062 250.88 0.0000
ηparameter for time varying inefficiency
Constant −0.0394* 0.0125 −3.15 0.0016

Mean Std. Deviation Minimum Maximum
Technical Efficiency 0.7402 0.1244 0.3562 0.9804

Notes: * p < 0.01, ** p < 0.05, *** p < 0.10.
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owned reduced technical inefficiency. That is, such transit systems have
lower levels of technical inefficiency when compared to other types of
ownership such as being city-, privately- or university-owned. This
shows an advantage of MPO owned transit systems and may be ex-
plained by their abilities to leverage their planning resources and ex-
pertise to select and design better routes responsive to passenger de-
mand as well as being larger operations with large budgets which allow
them to use specialised resources.9 Moreover, MPO-owned transit sys-
tems cover wider areas traversing municipal boundaries and generally
have longer routes so this finding shows that they are able to use their
existing resources to produce large outputs measured in vehicle miles.

Comparing the long run cost elasticity of network size, which is its
first order coefficient, to the effect of network size on technical in-
efficiency, no consistent pattern emerges; that is, network size has
different effects on technical inefficiency and cost. This inconsistency
does not allow us to make strong inferences about how this variable
affects cost and technical inefficiency. If the finding of network size
increasing technical inefficiency is what to expect, then there may be
cost-increasing effects of this variable which this study did not capture.
Also, this finding suggests that making inferences that because a vari-
able reduces (increases) technical inefficiency it would reduce (in-
crease) cost would be erroneous and policies based on such inferences
misdirected since we found an opposite effect, which may be true for
other variables we did not examine. It also suggests caution when de-
ciding which variables to include in the deterministic part of the
frontier and which to include in the parameterisation of technical in-
efficiency. Where there are inconsistencies as we found for network
size, theory- and empirical-driven decisions should guide which to in-
clude in each of them. Certainly, if the coefficient of a variable is sta-
tistically significant in say cost and not in technical inefficiency, then it
seems reasonable to remove it from the latter and retain it in the
former. We would like to extend this caution to all variables used in
parameterising technical inefficiency whose effects on cost have not
been established in previous research or through conceptualisation.

Managerial Implications: The above results have managerial im-
plications. For example, the finding that being an MPO owned transit
system reduces technical inefficiency means that such a transit system
uses fewer inputs to produce a given level of output or that it is more
technically efficient relative to other transit systems. However, given
the range of technical efficiency for the transit systems studied (0.3562
to 0.9804) there is not a transit system which is technically efficient
among them. Thus, all will benefit from actions which increase tech-
nical efficiency such as reducing inputs or increasing output. While
increasing output appears to be a simpler strategy, it must be done
carefully by considering demand; that is, management increasing pas-
senger services only when justified by high demand potential.

If the input reduction approach is used some strategies for man-
agement to consider would include longer headways on routes with less
demand and during off-peak periods, using attrition and retirement to
reduce labour inputs, larger and longer vehicles to reduce fleet size and
labour employment, and energy efficient vehicles to reduce fuel use.
Because the study also found that transit systems with extensive route
networks have higher technical inefficiency, it suggests that they do not
use their resources optimally and should consider the same suggestions
above to reduce their inputs or increase output. Doing so would reduce
their costs more than that reported in this paper. Another consideration
for management is whole service contracting of passenger service to
meet the federal contracting-out regulation. This is because we found
higher levels of technical inefficiency in transit systems that used the
mixed service delivery system by which they contracted-out portions of

their services and provided others themselves with higher levels of in-
puts they were required to keep to meet federal regulations regarding
transit inputs especially labour and capital.

Limitations: As instructive as perhaps the above results may appear,
there are limitations of this study worth considering. One is the rather
short panel (5 years) used in this analysis and another is the use of
unbalanced panel data. While the unbalanced panel allowed us to ob-
tain cross-firm data variation the short panel limited within-firm data
variation thus preventing us from using fixed and random effects
models. Future work that uses a longer panel should provide results that
can be compared to those in this study for them to be generalized.
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